Bilevel hyperparameter optimization for support vector classification: theoretical analysis and a solution method

نویسندگان

چکیده

Abstract Support vector classification (SVC) is a classical and well-performed learning method for problems. A regularization parameter, which significantly affects the performance, has to be chosen this usually done by cross-validation procedure. In paper, we reformulate hyperparameter selection problem support as bilevel optimization in upper-level minimizes average number of misclassified data points over all folds, lower-level problems are $$l_1$$ l 1 -loss SVC problems, with each one fold T-fold cross-validation. The resulting model then converted mathematical program equilibrium constraints (MPEC). To solve MPEC, propose global relaxation algorithm (GR–CV) based on well-know Sholtes-type (GRM). It proven converge C-stationary point. Moreover, prove that MPEC-tailored version Mangasarian–Fromovitz constraint qualification (MFCQ), key property guarantee convergence GRM, automatically holds at feasible point MPEC. Extensive numerical results verify efficiency proposed approach. particular, compared other methods, our enjoys superior generalization performance almost sets used paper.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

solution of security constrained unit commitment problem by a new multi-objective optimization method

چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...

Bilevel Model Selection for Support Vector Machines

The successful application of Support Vector Machines (SVMs), kernel methods and other statistical machine learning methods requires selection of model parameters based on estimates of the generalization error. This paper presents a novel approach to systematic model selection through bilevel optimization. We show how modelling tasks for widely used machine learning methods can be formulated as...

متن کامل

A New Bayesian Design Method for Support Vector Classification

In this paper, we apply popular Bayesian techniques on support vector classifier. We propose a novel differentiable loss function called trigonometric loss function with the desirable characteristic of natural normalization in the likelihood function, and then follow standard Gaussian processes techniques to set up a Bayesian framework. In this framework, Bayesian inference is used to implement...

متن کامل

A Feature Selection Newton Method for Support Vector Machine Classification

A fast Newton method, that suppresses input space features, is proposed for a linear programming formulation of support vector machine classifiers. The proposed stand-alone method can handle classification problems in very high dimensional spaces, such as 28,032 dimensions, and generates a classifier that depends on very few input features, such as 7 out of the original 28,032. The method can a...

متن کامل

A QUADRATIC MARGIN-BASED MODEL FOR WEIGHTING FUZZY CLASSIFICATION RULES INSPIRED BY SUPPORT VECTOR MACHINES

Recently, tuning the weights of the rules in Fuzzy Rule-Base Classification Systems is researched in order to improve the accuracy of classification. In this paper, a margin-based optimization model, inspired by Support Vector Machine classifiers, is proposed to compute these fuzzy rule weights. This approach not only  considers both accuracy and generalization criteria in a single objective fu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Methods of Operations Research

سال: 2022

ISSN: ['0042-0573', '1432-5217', '1432-2994']

DOI: https://doi.org/10.1007/s00186-022-00798-6